Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(9): e0273526, 2022.
Article in English | MEDLINE | ID: covidwho-2054327

ABSTRACT

BACKGROUND: Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. METHODS: We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. RESULTS: Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). CONCLUSIONS: The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Chloroquine/adverse effects , Data Analysis , Humans , Hydroxychloroquine/adverse effects
2.
Ann Am Thorac Soc ; 2020 Nov 09.
Article in English | MEDLINE | ID: covidwho-1175439

ABSTRACT

RATIONALE: The COVID-19 pandemic struck an immunologically naïve, globally interconnected population. In the face of a new infectious agent causing acute respiratory failure for which there were no known effective therapies, rapid, often pragmatic trials were necessary to evaluate potential treatments, frequently starting with medications that are already marketed for other indications. Early in the pandemic, hydroxychloroquine and azithromycin were two such candidates. OBJECTIVE: Assess the relative efficacy of hydroxychloroquine and azithromycin among hospitalized patients with COVID-19. METHODS: We performed a randomized clinical trial of hydroxychloroquine vs. azithromycin among hospitalized patients with COVID-19. Treatment was 5 days of study medication. The primary endpoint was the COVID Ordinal Outcomes scale at day 14. Secondary endpoints included hospital-, ICU-, and ventilator-free days at day 28. The trial was stopped early after enrollment of 85 patients when a separate clinical trial concluded that a clinically important effect of hydroxychloroquine over placebo was definitively excluded. Comparisons were made a priori using a proportional odds model from a Bayesian perspective. RESULTS: We enrolled 85 patients at 13 hospitals over 11 weeks. Adherence to study medication was high. The estimated odds ratio for less favorable status on the ordinal scale for hydroxychloroquine vs. azithromycin from the primary analysis was 1.07, with a 95% credible interval from 0.63 to 1.83 with a posterior probability of 60% that hydroxychloroquine was worse than azithryomycin. Secondary outcomes displayed a similar, slight preference for azithromycin over hydroxychloroquine. QTc prolongation was rare and did not differ between groups. The twenty safety outcomes were similar between arms with the possible exception of post-randomization onset acute kidney injury, which was more common with hydroxychloroquine (15% vs. 0%). Patients in the hydroxychloroquine arm received remdesivir more often than in the azithromycin arm (19% vs. 2%). There was no apparent association between remdesivir use and acute kidney injury. CONCLUSIONS: While early termination limits the precision of our results, we found no suggestion of substantial efficacy for hydroxychloroquine over azithromycin. Acute kidney injury may be more common with hydroxychloroquine than azithromycin, although this may be due to the play of chance. Differential use of remdesivir may have biased our results in favor of hydroxychloroquine. Our results are consistent with conclusions from other trials that hydroxychloroquine cannot be recommended for inpatients with COVID-19; azithromycin may merit additional investigation. CLINICAL TRIAL REGISTRATION: This trial was prospectively registered (NCT04329832) before enrollment of the first patient.

3.
Ann Am Thorac Soc ; 17(8):1008-1015, 2020.
Article in English | MEDLINE | ID: covidwho-724110

ABSTRACT

Coronavirus disease (COVID-19) is a potentially fatal illness with no proven therapy beyond excellent supportive care. Treatments are urgently sought. Adaptations to traditional trial logistics and design to allow rapid implementation, evaluation of trials within a global trials context, flexible interim monitoring, and access outside traditional research hospitals (even in settings where formal placebos are unavailable) may be helpful. Thoughtful adaptations to traditional trial designs, especially within the global context of related studies, may also foster collaborative relationships among government, community, and the research enterprise. Here, we describe the protocol for a pragmatic, active comparator trial in as many as 300 patients comparing two current "off-label" treatments for COVID-19-hydroxychloroquine and azithromycin-in academic and nonacademic hospitals in Utah. We developed the trial in response to local pressures for widespread, indiscriminate off-label use of these medications. We used a hybrid Bayesian-frequentist design for interim monitoring to allow rapid, contextual assessment of the available evidence. We also developed an inference grid for interpreting the range of possible results from this trial within the context of parallel trials and prepared for a network meta-analysis of the resulting data. This trial was prospectively registered (ClinicalTrials.gov Identifier: NCT04329832) before enrollment of the first patient.Clinical trial registered with www.clinicaltrials.gov (NCT04329832).

SELECTION OF CITATIONS
SEARCH DETAIL